OmenDB
Embedded vector database for Python and Node.js.
No server. No setup. Just install.
$ pip install omendb
View Documentation →
example.py
import omendb
# Open or create database
db = omendb.open("./vectors", dimensions=768)
# Add vectors with metadata
db.set([{
"id": "doc1",
"vector": embedding,
"text": "Hello world",
"metadata": {"category": "greeting"}
}])
# Search with filters
results = db.search(query_vector, k=10, filter={"category": "greeting"}) No Server
Runs in-process. No Docker, no ports, no configuration.
Persistent
Data saved automatically. Survives restarts.
Fast
HNSW index with SIMD. 10K+ QPS on laptop.
Batteries Included
Hybrid search, filtering, quantization built-in.
Features
Vector Search
HNSW graph with 95%+ recall. L2, cosine, and dot product distance.
Hybrid Search
BM25 text search combined with vector similarity using RRF fusion.
Filtering
MongoDB-style metadata queries with ACORN-1 algorithm.
Quantization
4-8x compression with ~99% recall. Reduce memory usage.
Collections
Multiple namespaces in a single database file.
Multi-language
Python, Node.js, and Rust. Same API everywhere.
Installation
Python
pip install omendb Node.js
npm install omendb Rust
cargo add omendb